
AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

AN02007: Calculating Cyclic Redundancy Checks (CRC) on
XCORE

Publication Date: 2025/4/4
Document Number: XM-015153-AN v1.1.0

IN THIS DOCUMENT

1 Nomenclature . 1
2 Standard form of a CRC . 1
3 The XMOS CRC instructions . 2
4 Example - Ethernet . 4
5 Computing the CRC with a polynomial that is shorter than 32 bits 5
6 Computing the CRC by ingesting fewer than 32 bits at a time 5
7 Helpful links . 5

A Cyclic Redundancy Check (CRC) is a type of error-detecting code used to detect ac-
cidental changes to raw data in digital networks and storage devices. It’s a simple but
powerful technique to ensure data integrity. When data is transmitted or stored, CRCs
help verify that the information has not been altered or corrupted. Typically, checksums,
calculated by a CRC, are attached to their corresponding data to allow a consumer of
that data to verify it’s integrity. The computation involved is based around polynomial
division.

1 Nomenclature

The following standard terms are used to define a CRC algorithm instance:

· Bit Width: The width of the CRC value, n bits. The width of the polynomial is then
limited to n bits ((n+1) if including the implicit bit).

· Polynomial: Used to generate the CRC, stored as a bit string with each bit representing
an increasing or decreasing order of x.

· Input reflected: If reflected then the input bytes are fed into the CRC in reverse order,
i.e. bit 0 is first and bit 7 is last.

· Result reflected: The output CRC value is reflected, i.e. bit-reversed, before being re-
turned. It is done over the whole n bits, not byte wise.

· Initial Value: The value used to initialize the CRC value.

· Final XOR value: This is a value, the same width as the CRC, that is XORed in at the
end of the data ingestion.

C functions that illustrate the behaviour of an XMOS ISA assembly instruction will have
the suffix _asm.

2 Standard form of a CRC

Upon searching for a CRC implementation one is likely to come across the following
implementation, or one very similar:

1

AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

uint32_t crc32(uint32_t len, uint8_t *data, uint32_t init,
uint32_t final_xor) {

uint32_t val, crc = init;
while(len--) {

val = (crc ^ *data++) & 0xff;
for(int i=0; i < 8; i++)

val = val & 1 ? (val>>1)^POLY : val>>1;
crc = val ^ crc >> 8;

}
return crc ^ final_xor;

}

In the implementation above the data is consumed byte-wise but with a trivial transfor-
mation it could be adjusted to consume any number of bits. The code below assumes
that the data is stored as an array of len bytes, each of which contains a single bit,
showing the computation of the CRC over len bits:
uint32_t crc32(uint32_t len, uint8_t *data, uint32_t init,

uint32_t final_xor) {
uint32_t val, crc = init;
while(len--) {

val = (crc ^ *data++) & 0x1;
if (val)

crc = POLY ^ crc >> 1;
else

crc = crc >> 1;
}
return crc ^ final_xor;

}

Of note here is that the data is inserted at the left most end of the shift register, crc.,
this is contrary to the naive implementation, which is on the right(in little endian format).

In the byte-wise version you may also find the:
for(int i=0; i < 8; i++)

val = val & 1 ? (val>>1)^POLY : val>>1;

replaced with:
val = precomputed_look_up_table_256(val);

This is a further optimised version, as the reader might observe that the resulting val
depends solely on the 8 bit initial val and thus can be precomputed.

3 The XMOS CRC instructions

Across the XCORE ISAs there are four instructions that assist in calculating CRCs.

· crc32

· crc8

· crcn

· crc32_inc

The implementation can be generalised by the following C code:
uint32_t crc_xcore(uint32_t crc, uint32_t data, uint32_t poly, uint32_t count){

for(int i=0; i<count; i++){
if(crc&1)
crc = (((data&1)<<31) | (crc>>1))^poly;

else
crc = ((data&1)<<31) | (crc>>1) ;

data >>= 1;
}
return crc;

}

where data, crc and poly from the C implementation match to d, x, and p from the
assembly mnemonics.

2

AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

Instruction count Mnemonic and Arguments Other

crc32 32 crc32 x, d, p
crcn n crcn x, d, p, n
crc8 8 crc8 x, e, d, p e = d << 8
crc32_inc 32 crc32_inc x, d, p, a, b a = a + b

The key difference between the standard form and the XMOS instructions is the point
of insertion into the shift register. In the XMOS implementations the data is inserted at
the most-significant end of the shift register with the bit exiting on the least-significant
end determining if the polynomial xor should be applied. In the standard form, otherwise
known as the DIRECT TABLE ALGORITHM, the data is inserted together with the least-
significant bit. This is shown in Fig. 1.

This differencemanifests as the standard form XORing every bit of inserted data into the
crc as it is ingested and the XMOS implementation running “32 bits behind”.

0

poly

01

init0init1init2init3

012

0123

0123final0

123final0final1

23final0final1final2

3final0final1final2final3

init0init1init2init3

init3

init2init3

init1init2init3

init0init1init2init3

init0init1init2init3

if true then xor poly

'0

crc =crc =

Bit 0

Bit 1

if true then xor poly

Bit 2

Bit 3

final0

final1

final2

final3

Bit 0xor

init1init2init3'0'1

Bit 1xor

init2init3'0'1'2

Bit 2xor

init3'0'1'2'3

Bit 3xor

Finally, xor final_xor_val...

Standard FormXMOS Form

Text is not SVG - cannot display

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

if true then xor poly

Fig. 1: CRC creation

3.1 Data bit ordering

In order to compute CRC efficiently the XMOS CRC instructions can ingest many bits
at a time. Upon executing a XMOS CRC instruction the instruction will ingest the data
from the right most bit, bit 0, until it has ingested the count required by the particular
instruction.

Bits are ingested from the right, as this matches up with the way that ports serialise and
deserialise data. Serialisation outputs the LSB first and shifts right. Deserialisation shifts
right and insert the new data as the MSB.

If the bit ordering of data stored in memory or data coming from your input stream is dif-
ferent, then the BITREV and BYTEREV instructions can be used to alter the order. BITREV

3

AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

will swap all bits form left to right. BYTEREV swaps the byte in a word. A combination of
the two can swap all bits in a byte.

3.2 Polynomial representation

The XMOS CRC instructions use a reversed representation of the polynomial. This
means that the bit field representing the polynomial will have its highest order powers of
x in the least significant bits, i.e. to the right. The left most bit of the bit field represents
the x^0 term, the right most represents x^31 and x^32 is implicitly one. We discuss poly-
nomials of less than 32 bits in Computing the CRC with a polynomial that is shorter than
32 bits.

4 Example - Ethernet

The Ethernet 801.22 standard specifies how the CRC, or Frame Check Sequence, should
be calculated. In summary, the first 32 bits ingested following the preamble should be
inverted, this is equivalent to the initial value of the CRC being set to 0xffffffff. The re-
maining data should be ingested as normal, finally, the final xor should be 0xffffffff.

Therefore, the CRC for an ethernet frame would be computed by the following:
uint8_t data[];
uint32_t ethernet_crc =
crc32(sizeof(data), data, 0xffffffff, 0xffffffff);

The returned value ethernet_crcwould be appended to the frame in the case of a ethernet
transmitter and in the case of a receiver could be compared to the received FCS.

In order to implement this efficiently with the XMOS instruction set a few optimisations
may be incorporated. Below is the pseudo assembly for implementing a ethernet trans-
mit using the XMOS CRC instruction set. Data needs to be fetched from somewhere, i.e.
input from a channel or loaded from memory, then ingested into the CRC. After all data
has been transmitted the FCS is complete and need to be transmitted also.
set crc, 0

fetch data // get the data
crc32 crc, ~data, poly // ingest the first word inverted
out data // output the data

data_loop:
fetch data // get the data
crc32 crc, data, poly // ingest the data
out data // output the data
bu loop // loop

crc32 crc, ~0, poly // finalise the crc
out crc // output the crc

Conveniently the finalisation of the crc is a single crc32 of 0xffffffff which can be
made with a MKMSK instruction.

As an optimisation we can remove the initialisation of the crc register to zero and the
first crc32 instruction. As the first crc is always with zero, we can simply replace it with
a NOT instruction:
fetch data // get the data
not crc, data // init to data inverted
out data // output the data

data_loop:
fetch data // get the data
crc32 crc, data, poly // ingest the data
out data // output the data
bu loop // loop

crc32 crc, ~0, poly // finalise the crc
out crc // output the crc

Here is the optimisedXMOSpseudo assembly for implementing a ethernet receiver using
the XMOSCRC instruction set. In the receive case the crc is initialised to amagic number

4

AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

such that the resulting correct data sequence will produce a 0xffffffff output crc.
Such an output is trivial to branch against.
crc = magic // initialise the crc to a magic number

data_loop:
input data // get the data
crc32 crc, data, poly // ingest the data including the FCS

//check that crc is 0xffffffff

Themagic number can be computed by running the crc in reverse with the data required
to make the crc be as if it were initialised to the initial_crc . This is achieved by
running:
uint32_t make_magic_number(uint32_t poly)
{
uint32_t data[2] = {0, ~0};
uint32_t crc = 0;
for (int i = ARRAY_SIZE(data) - 1; i > 0; i--)
crc = crc32_rev(data[i], crc, poly);

return crc;
}

This allows the CRC to be computed such that at the end of the ingestion of all the data
the crc, in correct, should be in the state of final_xor_value.

5 Computing the CRC with a polynomial that is shorter than
32 bits

Using the XMOSCRC instructions any length of polynomial up to 32 can be implemented.
To achieve an M-bit CRC
· Set the polynomial register to the reversed representation of the desired polynomial.

i.e. for the 7 bit poly x^7 + x^3 + 1 the forward representation is 0x9, the reversed
representation is 0x48. Note that for an M-bit CRC bit M-1 must be ‘1’ and the Mmost-
significant bits are ‘0’.

· Apply the initial_crc value, M-bits, to the initial M-bits of the data by preforming
an XOR between them.

· Ingest the data as normal using any of the CRC instructions.
· Ingest a final 32 zeros with the final_xor value XORed onto it to finish the CRC.
An illustration of this can be seen in the test_n_bit_poly() function in the source
code.
//First XOR in the initial CRC into the data
for(int len=0;len < poly_len; len +=8){
data[len/8] = (init ^ data[len/8]);
init >>= 8;

}

//Then perform the data ingestion as normal
uint32_t xmos_crc = 0;
for(int i=0;i<sizeof(data);i++){

//crc8_asm consumes one byte at a time
xmos_crc = crc8_asm(xmos_crc, data[i], poly);

}

//Finally, ingest 32 zeros with the final_xor included.
xmos_crc = crc32_asm(xmos_crc, final_xor, poly);

6 Computing the CRC by ingesting fewer than 32 bits at a time

The XMOS instruction set makes this very easy, crcn ingests n bits at a time, up to 32.
Alternatively, data can be ingested and shifted bytewise by using the crc8 instruction.

7 Helpful links

· CRC Calculator https://crccalc.com
· CRC pages on Wikipedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

5

https://crccalc.com
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

AN02007: Calculating Cyclic Redundancy Checks (CRC) on XCORE

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

6

	Nomenclature
	Standard form of a CRC
	The XMOS CRC instructions
	Example - Ethernet
	Computing the CRC with a polynomial that is shorter than 32 bits
	Computing the CRC by ingesting fewer than 32 bits at a time
	Helpful links

