ANO0O0137: USB CDC-ECM Class for Ethernet over USB

2 MOS

ANQ0OQ131: USB CDC-ECM Class for Ethernet over USB

Publication Date: 2025/3/27
Document Number: XM-007103-AN v3.0.0

IN THIS DOCUMENT

1 Introduction 1
2 OVEIVIEW 2
3 USB CDC-ECM Class application o 2
4 Furtherreading 18

1 Introduction

This application note shows how to create a USB device compliant to the standard USB
Communications Device Class (CDC) and the Ethernet Control Model (ECM) Subclass
on an XMOS device.

The code associated with this application note provides an example of using the XMOS
USB Device Library (lib_xud) and associated USB class descriptors to provide a frame-
work for the creation of a USB device emulating Ethernet.

This example USB CDC-ECM implementation provides an emulated Ethernet interface
running over high speed USB. It supports the standard requests associated with ECM
model of the USB CDC specification.

The demo application handles the Ethernet frames received from the USB endpoitns
and hosts a HTTP web server acting as another virtual network device. A standard web
browser from host PC can open the web page served from the USB device. The web
page provides a statistics of different packets like ICMP, TCP, UDP etc received through
the Ethernet frames from the host PC. This demonstrates a simple way in which Ethernet
over USB applications can easily be deployed using an xCORE-USB device.

The demo application code can be extended to bridge an actual Ethernet interface by
adding MAC and MII software layers. This enables you to create USB to Ethernet Adap-
tors using xCORE-USB device.

Note: This application note provides a standard USB CDC-ECM class device and as
a result does not require external drivers to run on Linux and macOS. Windows doesn't
support USB ECM model natively and thus requires third party drivers.

This application note is designed to run on XMOS xcore-200 or xcore.ai series devices.

The example code provided with the application has been implemented and tested on
the XK-EVK-XU3176 board but there is no dependency on this board and it can be modified
to run on any development board which uses an xcore-200 or xcore.ai series device.

This document assumes familiarity with the XMOS xCORE architecture, the Universal
Serial Bus 2.0 Specification and related specifications, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this
application note are linked to in the references appendix.

https://www.xmos.com/file/lib_xud

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

For the full API listing of the XMOS USB Device (XUD) Library please see the document
XMOS USB Device (XUD) Library'.

2 Overview

USB Communications Class is a USB standard that defines mechanism for connecting
Networking devices to host machines. USB CDC has specified multiple Subclass stan-
dards to support different networking devices. For Ethernet-style networking over USB,
one of the following Subclass specifications is used:

1. Ethernet Control Model (ECM).
2. Ethernet Emulation Model (EEM).
3. Network Control Model (NCM).

Microsoft's RNDIS is also a famous Ethernet over USB standard that is not only supported
in Windows but also in other OS platorms through thrid party drivers.

Ethernet over USB provides the following advantages:
Application independent exchange of data over USB.
Leverage the networking protocol stack present in operating systems.

Abstraction for USB application developers at network level like sockets, HTTP (web
pages) etc.

USB-to-Ethernet Adaptors etc.

In this application note, the USB CDC-ECM class is chosen for the implementation of
Ethernet emulation of USB device and it is discussed in detail which will help you to de-
velop your own USB CDC-ECM product using an xcore device or act as a reference to
implement other Ethernet supporting subclass on xcore devices.

The standard USB CDC-ECM class is specified in a document ECM 120.pdf which can
be found in the USB-IF website.

(https://www.usb.org/sites/default/files/CDC1.2_WMC1.1_012011.zip)

2.1 Block diagram

Fig. 1 shows a block diagram of example USB CDC-ECM applications.
3 USB CDC-ECM Class application

The example in this application note uses the XMOS USB device library (1ib_xud) and
shows a simple program that enumerates a USB CDC-ECM Class device. The host side
driver of this device will emulate an Ethernet interface that seamlessly connects with the
network stack of host’s operating system. The USB device runs a very simple web server
and acts like another device on Ethernet network i.e. the USB device imitates a network
interface card of the host machine and a server connected to the host machine through
Ethernet network.

For this USB CDC-ECM device application example, the system comprises four tasks
running on separate logical threads of an xcore device.

The tasks perform the following operations.
A task containing the USB library functionality to communicate over USB.

A task implementing Endpoint 0 responding to both standard and CDC-ECM class-
specific USB requests.

T https://www.xmos.com/file/lib_xud

https://www.usb.org/sites/default/files/CDC1.2_WMC1.1_012011.zip
https://www.xmos.com/file/lib_xud

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

.
XMOS Ethernet (
XU316-1024 PHY ryyw
= =

XU316-1024

USB-to-Ethernet Router

Webserver on

Adapter USB Device

XU316-1024

Application 1 Application 2

(Discussed in this app note)

Fig. 1: Block diagram of USB CDC-ECM applications

» A task implementing the data endpoints and notification endpoint of the CDC-ECM
class. It handles tx and rx buffers and provides APIs for applications to receive and
transmit Ethernet frames.

» A task containing Ethernet frame handler and simple HTTP server.

These tasks communicate via the use of XCONNECT channels which allow data to be
passed between application code running on separate logical cores. In this example,
XC interfaces are used, which abstracts out the channel communication details with
function level interface.

Fig. 2 shows the task and communication structure for this USB CDC-ECM class appli-
cation example.

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

c_ep_out[0] Endpoint 0

¢_ep_in[0] Hand ler

c ep out[1]
c ep in[1]

CDC-ECM
Endpoints
Hand ler

1/0 XUD
Manager

c ep in[2]

usb cdc

Ethernet
Frames
Handler

XU316-1024

Fig. 2: Task diagram of the USB CDC-ECM example

3.1 CMakelists.txt additions for this application

To start using the USB library, you need to add 1ib_xud to your xcommon compatible
CMakelLists.txt:

set (APP_DEPENDENT_MODULES "lib_xud")

You can then access the USB functions in your source code via the xud_device.h
header file:

#include "xud_device.h"

3.2 Source code files

The example application consists of several source code files and the following list pro-
vides an overview of how the source code is organized.

» xud_ecm.xc, xud_ecm.h - Contains the USB CDC-ECM implementation which includes
the USB descriptors, endpoints handler tasks (functions), class-specific defines, xC
interface to read/write Ethernet frames.

» main.xc - Contains main (') function and some USB defines.

» packet_buffer.xc, queue.xc - Buffer implementation to hold Ethernet frames (Max of
1514 bytes) and to allocate and deallocate dynamically from buffer pool. Queue im-
plementation to queue up the tx and rx frame buffers in a FIFO fashion.

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

ethernet xc - Contains implementation of application handling the Ethernet frames and
upper layer protocols like ICMP, DNS etc

eth_tcp - This folder has TCP/IP and HTTP server implementation source files. Note:
This is not a complete TCP/IP stack.

3.3 Setting up the USB library

main.xc has some arraysin it that are used to configure the endpoints for the the XMOS
USB device library. These are displayed below.

/* USB Endpoint Defines */
#define XUD_EP_COUNT_OUT 2 //Includes EP@ (1 OUT EP@ + 1 BULK OUT EP)
#define XUD_EP_COUNT_IN 3 //Includes EPO (1 IN EP@ + 1 INTERRUPT IN EP + 1 BULK IN EP)

XUD_EpType epTypeTableOut[XUD_EP_COUNT_OUT] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_BUL};
XUD_EpType epTypeTableIn[XUD_EP_COUNT_IN] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_INT, XUD_EPTYPE_
<+BUL};

The tables above describe the endpoint configurations for this device. This example has
bi-directional communication with the host machine via the standard endpoint 0 and
three other endpoints for implementing the CDC-ECM class.

These tables are passed to the function for the USB library which is called frommain().

3.4 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main. xc

int main() {

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
interface usb_cdc_ecm_if cdc_ecm;

/% 'Par’' statement to run the following tasks in parallel */
par
{
on USB_TILE: XUD_Main(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN,
null, epTypeTableOut, epTypeTableln,
XUD_SPEED_HS, XUD_PWR_BUS);

on USB_TILE: Endpoint®(c_ep_out[@], c_ep_in[08]);
on USB_TILE: CdcEcmEndpointsHandler(c_ep_in[1], c_ep_out[1], c_ep_in[2], cdc_ecm);
on USB_TILE: EthernetFrameHandler(cdc_ecm);

return 0;

}

Looking at this in a more detail you can see the following:
The par statement starts four separate tasks in parallel.

There is a task to configure and execute the USB library: XUD_Main(). This library
call runs in an infinite loop and handles all the underlying USB communications and
provides abstraction at the endpoints level.

There is a task to startup and run the Endpoint0 code: Endpoint@(). It handles the
control endpoint zero and must be run in a separate logical core inorder to promptly
respond to the control requests from host.

There is a task to handle all the other three endpoints required for the CDC-ECM class:
CdcEcmEnpointsHandler (). This function handles one bulk OUT and one bulk IN
endpoints for Ethernet frame transmissions and one interrupt IN endpoint for sending
notifications to host.

There is a task to handle the Ethernet frames received from the host:
EthernetFrameHandler (). This task implements network stack and hosts
the HTTP server. It also handles DNS queries, DHCP requests and ICMP pings.

The define USB_TILE describes the tile on which the individual tasks will run.

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

In this example all tasks run on the same tile, this is a requirement of XUD_Main().

The xCONNECT communication channels and the xC interface cdc_ecm used for inter-
task communication are setup at the beginning of main() and passed on to respec-
tive tasks.

The endpoint type tables discussed earlier are passed into the function XUD_Main().

3.5 Configuring the USB Device ID

The USB ID values used for vendor ID, product ID and device version number are defined
in the file xud_ecm. xc. These are used by the host machine to determine the vendor of
the device (in this case XMOS) and the product plus the firmware version.

/* USB CDC device product defines #/

#define BCD_DEVICE 0x0100

#define VENDOR_ID 6x20B1
#define PRODUCT_ID 6x0462

3.6 USB Descriptors

USB CDC class device has to support class-specific descriptors apart from the standard
descriptors defined in the USB specifications. These class specific descriptors are cus-
tomized according to the need of the USB CDC device. In the example application code,
the descriptors implement the ECM model of the CDC class to support Ethernet emula-
tion at the host machine.

Fig. 3 shows the descriptors used in the example code.

USB Device Descriptor

xud_ecm. xc is where the standard USB device descriptor is declared for the CDC-ECM
class device. Below is the structure which contains this descriptor. This will be requested
by the host when the device is enumerated on the USB bus.

/% USB Device Descriptor #*/

static unsigned char devDesc[] =

{

0x12, /* @ bLength */

USB_DESCTYPE_DEVICE, /* 1 bdescriptorType - Devicex*/

0x00, /* 2 becdUSB version */

0x02, /#* 3 bcdUSB version */
USB_CLASS_COMMUNICATIONS, /* 4 bDeviceClass - USB CDC Class */

0x00, /* 5 bDeviceSubClass - Specified by interface #*/
0x00, /* 6 bDeviceProtocol - Specified by interface */
0x40, /* 7 bMaxPacketSize for EP@ - max = 64%/
(VENDOR_ID & OxFF), /* 8 idVendor */

(VENDOR_ID >> 8), /* 9 idVendor */

(PRODUCT_ID & BOxFF), /* 10 idProduct */

(PRODUCT_ID >> 8), /* 11 idProduct =*/

(BCD_DEVICE & OxFF), /* 12 bcdDevice */

(BCD_DEVICE >> 8), /* 13 bcdDevice */

0x01, /* 14 iManufacturer - index of string*/

0x02, /* 15 iProduct - index of stringx/

0x00, /* 16 iSerialNumber - index of stringx/

0x01 /* 17 bNumConfigurations =*/

)i

From this descriptor you can see that product, vendor and device firmware revision are
all coded into this structure. This will allow the host machine to recognise the CDC device
when it is connected to the USB bus.

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

==
i
e

Fig. 3: USB descriptors hierarchical structure of CDC-ECM example

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device
class and the endpoints setup. The hierarchy of descriptors under a configuration in-
cludes interfaces descriptors, class-specific descriptors and endpoints descriptors.

when a host requests a configuration descriptor, the entire configuration hierarchy in-
cluding all the related descriptors are returned to the host. The following code shows
the configuration hierarchy of the demo application.

/* USB Configuration Descriptor */

static unsigned char cfgDesc[] =
0x09, /%
USB_DESCTYPE_CONFIGURATION, /*
0x47,00, /%
0x02, /%
0xe1, /*
0x04, /*
0x80, /*
0xC8, /%
/* CDC Communication interface
0x09, /%
USB_DESCTYPE_INTERFACE, /%
0x00, /%
0x00, /%
0x01, /%
USB_CLASS_COMMUNICATIONS, /%
USB_CDC_ECM_SUBCLASS, /*
0x00, /%
0x00, /%

/* Header Functional descriptor

0x05, /* @
USB_DESCTYPE_CS_INTERFACE, /* 1
0x00, /% 2
0x10, 0xe1, /% 3
/* Union Functional descriptor
0x05, /* 0
USB_DESCTYPE_CS_INTERFACE, /* 1
0x06, /% 2
0x00, /% 3
0x01, /% 4

/% Ethernet Networking Function
0xeD /* @

USB_DESCTYPE_CS_INTERFACE, /* 1
Ox0F, /% 2
0xe3, /* 3
0x00,0x00,0x00, 0x00, /% 4
OXEA, 05, /% 8
0x00, 0x00, /* 10
0x00, /% 12
/* Notification Endpoint descri
0x0e7, /
USB_DESCTYPE_ENDPOINT, /
(CDC_NOTIFICATION_EP_NUM | ©6x80
0xe3, /
0x40, /

0x00, /

OxFF, /
/* CDC Data interface */

0x09, /% @
USB_DESCTYPE_INTERFACE, /%1
0x01, /% 2
0x00, /* 3
0x02, /% 4
USB_CLASS_CDC_DATA, /* 5
0x00, /* 6
0x00, /* 7
0x00, /x 8
/+ Data OUT Endpoint descriptor
0xe7, /% @
USB_DESCTYPE_ENDPOINT, /%1
CDC_DATA_RX_EP_NUM, /% 2
0x02, /* 3
0x00, /% 4
0x02, /* 5
0x00, /% 6
/+ Data IN Endpoint descriptor
0xe7, /% @
USB_DESCTYPE_ENDPOINT, /%1
(CDC_DATA_TX_EP_NUM | 0x80),/*

0x02, /* 3

0 bLength */

1 bDescriptortype - Configuration#*/

2 wTotallLength */

4 bNumInterfaces */

5 bConfigurationValue */

6 iConfiguration - index of string */
7 bmAttributes - Bus powered */

8 bMaxPower - 406mA */

*
0 blLength */

1 bDescriptorType - Interface */

2 bInterfaceNumber - Interface 0 */

3 bAlternateSetting */

4 bNumEndpoints */

5 bInterfaceClass */

6 bInterfaceSubClass - Ethernet Control Model */
7 bInterfaceProtocol - No specific protocol #*/
8 iInterface - No string descriptor #*/

*/
bLength */
bDescriptortype, CS_INTERFACE */
bDescriptorsubtype, HEADER */
bcdCDC */

*/
bLength */
bDescriptortype, CS_INTERFACE */
bDescriptorsubtype, UNION */
bControlInterface - Interface 0 */
bSubordinateInterface® - Interface 1 */

al descriptor */

bLength - 13 bytes */

bDescriptortype, CS_INTERFACE */
bDescriptorsubtype, ETHERNET NETWORKING */
iMACAddress, Index of MAC address string */
bmEthernetStatistics - Handles None »*/
wMaxSegmentSize - 1514 bytes */

wNumberMCFilters - No multicast filters */
bNumberPowerFilters - No wake-up feature */
ptor */
* @ blLength */

* 1 bDescriptorType */

),/* 2 bEndpointAddress - IN endpoint#/
* 3 bmAttributes - Interrupt type */

* 4 wMaxPacketSize - Low */

*# 5 wMaxPacketSize - High */

* 6 bInterval */

bLength */

bDescriptorType */
bInterfacecNumber */
bAlternateSetting */

bNumEndpoints */

bInterfaceClass */
bInterfaceSubClass */
bInterfaceProtocolx/

iInterface - No string descriptor#/

*/

bLength */

bDescriptorType */
bEndpointAddress - OUT endpoint */
bmAttributes - Bulk type */
wMaxPacketSize - Low */
wMaxPacketSize - High */
bInterval */

*/
bLength */
bDescriptorType */

2 bEndpointAddress - IN endpoint */
bmAttributes - Bulk type */

(continues on next page)

4

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

(continued from previous page)

0x00, /* 4 wMaxPacketSize - Low byte */
0x02, /* 5 wMaxPacketSize - High byte */
0x01 /* 6 bInterval */

¥

The configuration descriptor tells host about the power requirements of the device and
the number of interfaces it supports.

The interface descriptors describe on how the host should communicate with the device
in the class level. There are two interface descriptors in a USB CDC-ECM device.

The CDC Communication interface descriptor is for device management. You can see
from the code that the device uses Etherner Control Model as the interface subclass,
this will make hosts to load default driver for CDC Ethernet. This interface has subordi-
nate descriptors like CDC functional descriptors and a notification endpoint descriptor.
The class-specific functional descriptors are discussed in detail in the next section. The
notification endpoint is an interrupt IN endpoint and is used to report device's network
connection state to the host. This endpoint is not used in this example application but
will be employed when bridging an Ethernet interface to the USB-ECM device.

The CDC Data interface descriptor defines the interface for Ethernet frames transmis-
sion and reception between host and device. This interface has two endpoints, one bulk
OUT endpoint for data transmissions from host to device and one bulk IN endpoint for
data transmissions from device to host.

unsafe{
/* String table - unsafe as accessed via shared memory */

The above code from the endpoint descriptors shows that the maximum packet size of
these endpoints to be 512 bytes (0x200) which is suited for handling Ethernet frames in
less number of transactions.

USB CDC-ECM Functional Descriptors

Functional descriptors describe the content of class-specific information within the Com-
munication Class interface. The USB_DESCTYPE_CS_INTERFACE define is used in the
descriptor structures to identify them. There are three functional descriptors used in this
CDC-ECM example. They are:

1. Header Functional Descriptor.
2. Union Functional Descriptor.
3. Ethernet Networking Functional Descriptor.

The Header and Union functional descriptors are generally used in all CDC subclasses
and the Ethernet Networking functional descriptor is meant for the ECM subclass.

Header functional descriptor mentions the version of the CDC specification the interface
comply with and it is shown below as found in the cfgDesc(] structure.

0x03, /* 3 iMACAddress, Index of MAC address string #/
0x00,0x00, 0x00, 0x00, /* 4 bmEthernetStatistics - Handles None */
OxEA, 05, /* 8 wMaxSegmentSize - 1514 bytes */

Note: The CDC version number (1.10) is mentioned as BCD in little endian format.

Union functional descriptor groups the interfaces that forms a CDC functional unit. It
specifies one of the interfaces as master to handle control messages of the unit. Fol-
lowing code from the CDC-ECM example shows that the the Communication Class in-
terface 0 acts as master and the Data Class interface 1acts as subordinate and together
forming a single functional unit.

/* Notification Endpoint descriptor */

0x07, /* 8 bLength */

USB_DESCTYPE_ENDPOINT, /% 1 bDescriptorType */
(CDC_NOTIFICATION_EP_NUM | 0x88),/* 2 bEndpointAddress - IN endpoint#/

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

Ethernet networking functional descriptor provides the Ethernet related capabilities and
parameters to the host. Following code shows the fields of the descriptor.

OxFF, /* 6 bInterval */

/* CDC Data interface */

0x09, /* 8 blLength */
USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType */
0x01, /* 2 bInterfacecNumber #*/
0x00, /* 3 bAlternateSetting */

The above code shows the followings:

48-bit MAC address is provided through the string descriptor index, the string descrip-
tor will carry the MAC address in a Unicode string format (example: 00229708A003).

Ethernet statistics which the device collects. All bits are set to ‘0" in this example
denoting that the device will not collect any Ethernet statistics.

Maximum segment size of 1514 bytes for handling 802.3 Ethernet frames.

Ethernet multicast filters and power filters are not supported in this USB-ECM exam-
ple.

USB String Descriptors

String descriptors provide human readable information for your device and you can con-
figure them with your USB product information. In CDC-ECM class it also provides the
48-bit MAC address of the device. The descriptors are placed in an array as shown in the
below code.

/* String table - unsafe as accessed via shared memory */
static char * unsafe stringDescriptors[]=

"\x09\x04", /* Language ID string (US English) =*/
"XMOS", /% iManufacturer */

"XMOS USB CDC Ethernet Device",/* iProduct */

"002297000000" , /* iMACAddress */

"Config", /% iConfiguration string */

i

The XMOS USB library will take care of encoding the strings into Unicode and structures
the content into USB string descriptor format.

3.7 USB Standard and Class-Specific requests

In xud_ecm.xc there is a function Endpoint0() which handles all the USB control requests
sent by host to control endpoint 0. USB control requests includes both standard USB
requests and the CDC-ECM class-specific requests.

In Endpoint0() function, a USB request is received as a setup packet by calling
USB_GetSetupPacket() library function. The setup packet structure is then examined to
distinguish between standard and class-specific requests.

The XMOS USB library provides a function USB_StandardRequests() to handle all the stan-
dard USB requests. This function is called with setup packet and descriptors structures
as shown below
/* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset */
unsafe{
result = USB_StandardRequests(ep@_out, ep@_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 6, null, 8, stringDescriptors, sizeof(stringDescriptors)/

—ssizeof(stringDescriptors[0]),
sp, usbBusSpeed);
}

The CDC Communication interface uses endpoint 0 as management element and re-
ceives class-specific control requests on it. The following code shows how the ECM
class-specific requests are filtered and passed to a function ControlinterfaceClassRe-
quests() for further handling.

10 y,

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

switch(bmRequestType)
{

/* Direction: Device-to-host and Host-to-device
* Type: Class

* Recipient: Interface

*/

case USB_BMREQ_H2D_CLASS_INT:

case USB_BMREQ_D2H_CLASS_INT:

/* Inspect for CDC Communications Class interface num */
if(sp.wIndex == 0)

{

/* Returns XUD_RES_OKAY if handled,

* XUD_RES_ERR if not handled,

* XUD_RES_RST for bus reset */

result = ControlInterfaceClassRequests(ep@_out, ep@_in, sp);
}
break;

}

The ControlinterfaceClassRequests() function is the place to handle all CDC-ECM re-
quests, These requests are defined in the xud_ecm.xc as follows:

/* CDC ECM Class requests Section 6.2 in CDC ECM spec */

#define SET_ETHERNET_MULTICAST_FILTERS 0x40

#define SET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER 0x41

#define GET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER 0x42

#define SET_ETHERNET_PACKET_FILTER 0x43

#define GET_ETHERNET_STATISTIC 0x44
/* 45h-4Fh RESERVED (future use) */

According to ECM specification, except SET_ETHERNET_PACKET_FILTER all the other re-
quests are optional. These requests are not used in this example application but will be
used when bridging an Ethernet interface to the USB device. In case of bridging an Ether-
net interface, the Ethernet MAC software layer and PHY software layer will be employed
and the MAC API functions can be directly used to perform the actions requested by the
class-specific requests.

3.8 Ethernet frame handling

The Data Class interface containing the bulk endpoints is used for exchanging Ethernet
frames between the device and host. The Ethernet frame includes everything starting
from the destination MAC address to the end of the data field, but excludes the CRC.
This frame structure is shown in Fig. 4

Destination MAC Source MAC Type Data
Address Address
(6 bytes) (6 bytes) (2 bytes) (46 - 1500 bytes)

Fig. 4: Ethernet frame exchanged over the USB endpoints

To handle asynchronous communication over two endpoints, events are used by
means of select statements as shown in the following piece of code from CdcEcmEnad-
pointsHandler() task.

select
case XUD_GetData_Select(c_epbulk_out, epbulk_out, length, result):
if(result == XUD_RES_OKAY)
{

/* Received some data */

if(length < MAX_EP_SIZE) {
/* USB Short packet or Zero length packet is received */
outLen += length;
/* Ethernet packet is received completely =*/
qPut(toDevQ, outBufId, outLen);

if(qIsFull(toDevQ)) {
devWaiting = 1;
} else {
outBufId = packetBufferAlloc();

(continues on next page)

1

4

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

(continued from previous page)

outlLen = @;
XUD_SetReady_Out (epbulk_out, (packetBuffer[outBufId], unsigned char[]));
}

} else {

/* USB Full packet */

outLen += MAX_EP_SIZE;

XUD_SetReady_Out(epbulk_out, (packetBuffer[outBufId], unsigned char[])+outLen);
}

} else {
XUD_SetReady_Out(epbulk_out, (packetBuffer[outBufId], unsigned char[])+outlLen);

break;
case XUD_SetData_Select(c_epbulk_in, epbulk_in, result):

/* USB Packet sent successfully when result is XUD_RES_OKAY */

int index = qPeek(toHostQ);

int bytesSent = toHostQ.data[index].from - inIndex;

inIndex = toHostQ.data[index].from;

int bytesToSend = toHostQ.data[index].len - toHostQ.data[index].from;

if(bytesToSend) {
if (bytesToSend > MAX_EP_SIZE) {
/% Still Large packet, split the transfer */
bytesToSend = MAX_EP_SIZE;

}
XUD_SetReady_In(epbulk_in, (packetBuffer[inBufId], unsigned char[])+inIndex, bytesToSend);
toHostQ.data[index].from += bytesToSend;

} else if (bytesSent == MAX_EP_SIZE)({
/* Send a Zero Length Packet to indicate completion of transfer x/
XUD_SetReady_In(epbulk_in, (packetBuffer[inBufId], unsigned char[]), 0);
inIndex += bytesSent;

} else {
/* Ethernet frame transfer is over */
packetBufferFree(toHostQ.data[index].packet);
/* Remove packet out of queue */
qGet(toHostQ) ;

/* Check if other packet is waiting to be sent to host */
if(!qIsEmpty(toHostQ)) {

index = qPeek(toHostQ);

inBufId = toHostQ.data[index].packet;

inIndex = toHostQ.data[index].from;

bytesToSend = toHostQ.data[index].len;

if(bytesToSend > MAX_EP_SIZE) {
bytesToSend = MAX_EP_SIZE;

}
XUD_SetReady_In(epbulk_in, (packetBuffer[inBufId], unsigned char[])+inIndex, bytesToSend);
toHostQ.data[index].from += bytesToSend;
} else {
/* No packets are available to send */
hostWaiting = 1;
}

break;

When OUT endpoint receives data, an event is triggered and the XUD_GetData_Select()
case is executed. Similary, when IN endpoint completes sending data to host the
XUD_SetData_Select() case is executed.

The maximum size of an Ethernet frame (1514 bytes) is greater than the maximum packet
size (512 bytes) of the USB endpoints, therefore an Ethernet frame may be split into mul-
tiple USB packet transfers. A USB short packet notifies the end of an Ethernet frame, if
the frame size is exactly a multiple of the maximum packet size of USB then a zero length
packet is used to notify the end of frame.

You can see from the above code that a free buffer is allocated using packetBufferAlloc(),
which is used to receive an Ethernet frame. Once the frame is completely received the
gPut() function is used to add the frame into a queue. The QUEUE_LENGTH (four) de-
fined in queue.h determines the maximum number of ethernet frames buffered up in the
queue.

There is also a separate queue to handle the Ethernet frames that are transmitted to the
host from the device.

12 y,

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

3.9 Application interface

The application interface is the set of functions defined as xC interface that enables ap-
plication tasks to send/receive Ethernet frames over the ECM data endpoints. The API
functions abstracts out all the buffering implementation details done at the endpoint
level. This xC interface is declared in xud_ecm.h file as shown below.

interface usb_cdc_ecm_if {
int is_frame_available();
[[guarded]] void read_frame(unsigned char buf[], REFERENCE_PARAM(unsigned, length));
[[guarded]] void send_frame(unsigned char buf[], REFERENCE_PARAM(unsigned, length));

%

In the above code, the read_frame() function gets an Ethernet frame which is waiting in
the reception queue, Similarly, the write_frame() function adds the Ethernet frame to the
transmission queue.

These interface functions pass arguments and return values over xCONNECT channels
and provide well defined inter-task communication. The server side of these functions
are defined under select case statements in the CdcEcmEndpointsHandler() task.

3.10 Demo application

In this USB CDC-ECM example, the Ethernet frames received from the host are handled
by the EthernetFrameHandler() task. This application task runs a simple HTTP server
acting as a virtual network device. This task performs the following:

Handles DHCP requests from the host PC to provide an IP address to it. The IP ad-
dresses are defined in the ethernet.xc file as shown below

/* IP Addresses of the USB device (Server) and the Host PC (Client) */
int ipAddressServer = BXA9FE5555;
int ipAddressClient = OxA9FEAAAA;
unsigned char ipAddressServerArray([4]
unsigned char ipAddressClientArray([4]

{169, 254, 85, 85};
{169, 254, 170, 170};

The client IP address corresponds to the host PC and the server IP address belongs to
the USB device.

Handles DNS queries containing the server name defined in the ethernet.xc file. The
server name is as shown below.

/% Server name as found in the DNS query */
unsigned char localName[] = "\x88xmos-cdc\x85local”;

The localnamel] is initialized in DNS name format and it corresponds to “xmos-cdc.local”
Handles HTTP webpage requests and ICMP control ping requests.

Collects a statistics of the different packets received from the host PC and embeds
the information in the web page.

13 y,

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

3.11 Demo hardware setup

To setup the demo hardware the following boards are required.
» XK-EVK-XU316 board shown in Fig. 5
» 2 x Micro-B USB cable

e

&

c Us

E357343 UL34V-0
AFE -M

10/ ¢:7202 ¢

=
T
fij

. O O|RST_N
WUP|O O|GPI00
ono[O O|GPiot
GPI02|O O|GRI03
ono|O OfCK =
MOsI|O O[MISO
. o\0lO O|WRQ
" ono|OO'cS N

GND

=

XMOS

|

Fig. 5: XMOS XK-EVK-316 Board

The hardware should be configured as follows:

» Connect the USB receptacle of the XK-EVK-XU376 to the host machine using a USB
cable

» Connect the DEBUG receptacle XK-EVK-XU376 to the host machine using a USB cable

The use of xSCOPE is required in this application so that the print messages that are
generated on the device as part of the demo do not interfere with the real-time behavior
of the USB device.

14 p,

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

3.12 Building the application

The application uses the xcommon-cmake build system as bundled with the XTC tools.
To configure the build run the following from an XTC command prompt:

cd app_an@@131
cmake -G "Unix Makefiles" -B build

If any dependencies are missing it is at this configure step that they will be downloaded
by the build system.

Finally, the application binary can be built using xmake:

xmake -C build

This command will cause a binary (app_usb_cdc_edc.xe file) to be generated in the
app_an00131/bin directory,

3.13 Launching the demo application
Once the demo example has been built the application can be executed on the XK-EVK-

XU3176.

Once built there will be a bin directory within app_an80131 which contains the binary
for the xCORE device. The xCORE binary has a XMOS standard .xe extension.

Launching from the command line

From the command line the xrun tool is used to download and run the code on the
XCORE device. In a terminal with XTC tools sourced, from the app_an@6131/bin di-
rectory, run:

Xxrun --xscope app_usb_cdc_edc.xe

Once this command has executed the application will be running on the XxCORE device.

The CDC Ethernet device should have enumerated on the host machine and the following
text should be in the console window:

--XMOS USB CDC-ECM Class demo--

Server IP Address: 169.254.85.85
Server URL: http://xmos-cdc.local

3.14 Running the demo

This demo works right away on platforms that have native support for USB CDC-ECM
class. Most versons of Linux have native support for this CDC Ethernet. The demo ap-
plication is tested on Ubuntu 20.04.6 LTS version.

Running on Linux

Once the USB device is enumerated in the host machine, the default CDC Ethernet driver
will be loaded. This host driver emulates the virtual Ethernet interface.

Run the command ip a in a terminal to view the emulated Ethernet interface among
the list of available network interfaces. To know which is the XMOS emulated interface,
run this command before and after connecting the device and see the extra interface
that appears. The emulated interface showing up on a Linux host machine inthe ip a
output should look similar to the following:

15 y,

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

8: enx00229708a0083: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UNKNOWN group default glen
— 1000
link/ether 80:22:97:08:a0:03 brd ff:ff:ff:ff:ff.ff
inet 169.254.170.170/16 brd 169.254.255.255 scope global dynamic enx00229708a003
valid_1ft 23@sec preferred_1ft 230sec
inet6 fe80::222:97ff:fe@8:a003/64 scope link
valid_1ft forever preferred_1ft forever

Run ping 169.254.85.85 command to ping the server running in the USB device.
This ping command sends ICMP request packets to the server and the output should
look as follows:

xmos@sw-hw-eth-ubu@:~$ ping 169.254.85.85

PING 169.254.85.85 (169.254.85.85) 56(84) bytes of data.

64 bytes from 169.254.85.85: icmp_seq=1 ttl=64 time=0.211 ms
64 bytes from 169.254.85.85: icmp_seq=2 ttl=64 time=0.153 ms
64 bytes from 169.254.85.85: icmp_seq=3 ttl=64 time=0.152 ms
64 bytes from 169.254.85.85: icmp_seq=4 ttl=64 time=0.165 ms
64 bytes from 169.254.85.85: icmp_seq=5 ttl=64 time=0.146 ms
64 bytes from 169.254.85.85: icmp_seq=6 ttl=64 time=0.188 ms
64 bytes from 169.254.85.85: icmp_seq=7 ttl=64 time=0.089 ms
64 bytes from 169.254.85.85: icmp_seq=8 ttl=64 time=0.185 ms
64 bytes from 169.254.85.85: icmp_seq=9 ttl=64 time=0.330 ms
AC

--- 169.254.85.85 ping statistics ---

9 packets transmitted, 9 received, 0% packet loss, time 8185ms

Open the URL http://xmos-cdc.local in a standard web browser like Mozilla or Chrome to
see the web page hosted by the USB device. The web page provides a statistics of the
packets handled by the USB device and it is shown in Fig. 6.

Refresh the opened webpage to see the packets count updated. Also note the number
of ICMP packets is same as the number of ping requests sent out previously.

3.15 Troubleshooting

If the host cannot ping the xCORE device, potential problems could be:

Link is down for the XMOS network. Run ip a and ensure that the link is up for the
XMOS emulated network. ip a output when the link state is down looks similar to:

8: enx00229788a003: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default gqlen 1000
link/ether 00:22:97:08:20:03 brd ff:ff:ff:ff:ff:ff

If thelinkis down,runip link set <interface_name> up commandtochange
this.

The XMOS network shows up with an IPV6 address. The ip a output might look
similar to:

8: enx00229708a003: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UNKNOWN group default
<—+qlen 1060
link/ether 00:22:97:08:a0:03 brd ff:ff:ff . ff:ff.ff
inet6 fe80::222:97ff:fe@8:a003/64 scope link
valid_1ft forever preferred_1ft forever

Restart DHCP to fix this:

sudo dhclient -r
sudo dhclient <interface_name>

Run ip ato ensure that the XMOS Ethernet interface has an IPV4 address assigned
to it, similar to:

8: enx80229788a003: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UNKNOWN group default
<—qlen 1000
link/ether 00:22:97:08:20:03 brd ff:ff:ff:ff:ff:ff
inet 169.254.170.170/16 brd 169.254.255.255 scope global dynamic enx00229708a003
valid_1ft 230sec preferred_1ft 230sec
inet6 fe80::222:97ff:fe08:a003/64 scope link
valid_1ft forever preferred_1ft forever

16 y,

®O® @ xmos-cdc.local

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

&« [« /A Not Secure xmos-cde.local T Im) e Finish update :

XMOS USB CDC Ethernet Control Model Class demo

This is a demo of the XMOS USB CDC ECM class device implemented using the XMOS USB library. CDC ECM model
specification enables Ethernet over USB. This web page is hosted by xCORE-USB sliceKIT that has enumerated as USB
CDC ECM device in this host machine and trasmitting and receiving Ethernet frames over USB endpoints.

Network Packets statistics

Total Number of packets received:

116

Total Number of packets transmitted:

50

Number of ARP packets received:

18

Number of TCP packets received:

14

Number of UDP packets received:

35

Number of ICMP packets received:

15

Total Number of bytes received:

19910

Total Number of bytes transmitted:

8446

17

Fig. 6: Webpage hosted by USB CDC-ECM device

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

4 Further reading

XMOS XTC Tools Installation Guide

XMQOS XTC Tools User Guide

USB 2.0 Specification

XMOS application build and dependency management system; xcommon-cmake
USB CDC Class Specification, USB.org:

Ethernet Frame Format

vV v v v v Vv

18 x

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.usb.org/sites/default/files/usb_20_20240604.zip
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.usb.org/sites/default/files/CDC1.2_WMC1.1_012011.zip
http://en.wikipedia.org/wiki/Ethernet_frame

ANO0O0137: USB CDC-ECM Class for Ethernet over USB

»MOS

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information”) and is providing
it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

19 y,

	Introduction
	Overview
	USB CDC-ECM Class application
	Further reading

