
Microphone array library 2.0.0

Microphone array library
The XMOS microphone array library is designed to allow interfacing to PDM microphones coupled with
efficient decimation to user selectable output sample rates. Additionally, a high resolution delay can be
introduced to each of the individual PDM microphones allowing for individual time shifts. This library is
only avaliable for XS2 devices.

Features

The microphone array library has the following features:

• 48kHz, 24kHz, 16kHz, 12kHz and 8kHz output sample rate by default (3.072MHz PDM clock),
• 44.1kHz, 22.05kHz, 14.7kHz, 11.025kHz and 7.35kHz output sample rate by default (2.8224MHz

PDM clock),
• 4, 8, 12 or 16 PDM interfaces per tile,
• No less than 80dB of stop band attenuation for all output sample frequencies,
• Configurable latency, ripple and bandwidth,
• Framing, configurable frame size from 1 sample to 8192 samples plus 50% overlapping frames

option,
• Windowing and sample index bit reversal within a frame,
• Individual microphone gain compensation,
• DC offset removal,
• Up to 3.072MHz input sample rate,
• High resolution (2.63 microsecond) microphone specific delay lines,
• Every task requires only a 62.5 MIPS core to run.

Components

• PDM interface,
• Four channel decimators,
• High resolution delay block.

Software version and dependencies

This document pertains to version 2.0.0 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_logging (>=2.0.0) • lib_xassert (>=2.0.0)

Related application notes

None

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM010267



Microphone array library 2.0.0

1 Overview

This guide is designed so that the user can understand how to use lib_mic_array by reading up to §13.
§14 and on are designed to explain implementation details of lib_mic_array, but do not need to be
understood to use it effectively.

Up to sixteen PDM microphones can be attached to each high channel count PDM interface
(mic_array_pdm_rx()). One to four processing tasks, mic_array_decimate_to_pcm_4ch(), each
process up to four channels. For 1-4 channels the library requires two logical cores:

Div 8
Decimator

4
ch

3.
07

2
M

H
z

Div 4
Decimator

1x
4

ch
38

4
kH

z

1x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

1x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

1x
4

ch
8.

.4
8

kH
z

1x
4 

ch
8.

.4
8 

kH
z

mic_array_decimate_to_pcm_4ch()mic_array_pdm_rx()

Figure 1: One to four channel count PDM interface

or for 5-8 channels three logical cores as shown below:

Div 8
Decimator

8
ch

3.
07

2
M

H
z

Div 4
Decimator

2x
4

ch
38

4
kH

z

2x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

2x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Div 4
Decimator

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

Div N
Decimator
N=2,4,6,8

or 12

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

2x
4

ch
8.

.4
8

kH
z

2x
4 

ch
8.

.4
8 

kH
z

mic_array_pdm_rx()

mic_array_decimate_to_pcm_4ch()

Figure 2: Five to eight count PDM interface

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM010267



Microphone array library 2.0.0

9-12 channels requires 5 logical cores and for 13-16 channels three six cores as shown below:

Div 8
Decimator

16
ch

3.
07

2
M

H
z

Div 4
Decimator

4x
4

ch
38

4
kH

z

4x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

4x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Div 4
Decimator

Voice
appDiv N

Decimator
N=2,4,6,8

or 12

Div N
Decimator
N=2,4,6,8

or 12

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

4x
4

ch
8.

.4
8

kH
z

4x
4 

ch
8.

.4
8 

kH
z

mic_array_pdm_rx()

mic_array_decimate_to_pcm_4ch()

Div 4
Decimator

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

Div N
Decimator
N=2,4,6,8

or 12

Div 4
Decimator

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

Div N
Decimator
N=2,4,6,8

or 12

Div 8
Decimator

Figure 3: Thirteen to sixteen count PDM interface

The left most task, mic_array_pdm_rx(), samples up to 8 microphones and filters the data to provide
up to eight 384 KHz data streams, split in two streams of four channels. The processing thread decimates
the signal to a user chosen sample rate (one of 48, 24, 16, 12, or 8 KHz). If more than 8 channels are
required then another mic_array_pdm_rx task can be created. After the decimation to the output sample
rate the following steps takes place:

• Any DC offset is eliminated on the each channel.
• The gain is corrected so that a maximum signal on the PDM microphone corresponds to a maximum

signal on the PCM signal.
• The individual gain of each microphone can be compensated. This can be used to compensate any

differences in gains between the microphones in a system.
• Frames of data are generated (with a frame size of 1 to 8192 in powers of two). Frames can be set

to overlap by half a frame.
• An optional windowing function is applied to each frame.
• The data can be stored in an index bit-reversed manner, so that it can be passed into an FFT without

having to do any preprocessing.

There is also an optional high resolution delay, running at up to 384kHz, that can be used to add to the
signal path channel specific delays. This can be used for high resolution delay and sum beamforming.
The task diagrams for 4 and 8 channel microphone arrays are given in Figure 4 and Figure 5 respectivly.

Higher channel counts are simple extensions of the above task diagrams. The high resolution delay
task requires a single extra core for up to 16 channels. All tasks requires a 62.5 MIPS core to run
correctly, therefore, all eight cores can be used simultaneously without timing problems developing within
lib_mic_array.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM010267



Microphone array library 2.0.0

Div 8
Decimator

4
ch

3.
07

2
M

H
z

Div 4
Decimator

1x
4

ch
38

4
kH

z

1x
4

ch
96

kH
z

Select
DC offset
FIR comp
Gain comp

1x
4

ch
8.

.4
8

kH
z

Overlapping
frames

WIndowing
Bit reverse

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

1x
4

ch
8.

.4
8

kH
z

1x
4 

ch
8.

.4
8 

kH
z

mic_array_pdm_rx() mic_array_decimate_to_pcm_4ch()

High
Resolution

Delay

mic_array_hires_delay()

1x
4

ch
38

4
kH

z

Figure 4: One to four channel count PDM interface with hires delay lines

Div 8
Decimator

8
ch

3.
07

2
M

H
z

Div 4
Decimator

2x
4 

ch
 

38
4 

kH
z

2x
4 

ch
96

 k
H

z

Select
DC offset
FIR comp
Gain comp

2x
4 

ch
8.

.4
8 

kH
z

Overlapping
frames

WIndowing
Bit reverse

Div 4
Decimator

Voice
app

Div N
Decimator
N=2,4,6,8

or 12

Div N
Decimator
N=2,4,6,8

or 12

Select
DC offset
FIR comp
Gain comp

Overlapping
frames

WIndowing
Bit reverse

2x
4 

ch
8.

.4
8 

kH
z

2x
4

ch
8.

.4
8

kH
z

mic_array_
pdm_rx()

mic_array_decimate_to_pcm_4ch()

High
Resolution

Delay

mic_array_
hires_delay()

2x
4

ch
38

4
kH

z

Figure 5: Five to eight count PDM interface with hires delay lines

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM010267



Microphone array library 2.0.0

2 Typical memory usage

The memory usage of lib_mic_array is mostly dependent on the desired output rates and the maximum
number of channels. As lower output rates require greater decimation from the input PDM their memory
requirements are proportionally greater also. Below is a table of the approximate memory usage against
the channel count and decimation factor for each final stage divider.

Decimation factor Channel count Approx memory usage (kB)

2 4 12.1

2 8 14.1

2 12 16.1

2 16 18.1

4 4 13.1

4 8 16.1

4 12 19.1

4 16 21.1

6 4 14.1

6 8 18.1

6 12 22.1

6 16 26.1

8 4 15.1

8 8 20.1

8 12 25.1

8 16 30.1

12 4 17.1

12 8 24.1

12 12 31.1

12 16 38.1

These valuse should be use as a guide as actual memory usage may vary slightly.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM010267



Microphone array library 2.0.0

3 Hardware characteristics

The PDM microphones need a clock input and provide the PDM signal on a data output. All PDM micro-
phones share the same clock signal (buffered on the PCB as appropriate), and output onto eight data
wires that are connected to a single 8-bit port:

CLOCK Clock line, the PDM clock the used by the microphones to drive the data out.

DQ_PDM The data from the PDM microphones on an 8 bit port.

Table 1: PDM microphone data and signal wires

The only port needed by the library is the 8-bit data port. The library assumes that the input port is
clocked using the PDM clock, and the library does not know where the PDM clock comes from. If a
clock block pdmclk is clocked at a 3.072 MHz rate, and the 8-bit port is p_pdm_mics then the following
statements will ensure that the PDM data port is clocked by the PDM clock:

configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

The input clock for the microphones can be generated in a multitude of ways. For example, a 3.072MHz
clock can be generated on the board, or the xCORE can divide down 12.288 MHz master clock. Or, if clock
accuracy is not important, the internal 100 MHz reference can be divided down to provide an approximate
clock.

If an external master clock is input to the xCORE on a 1-bit port p_mclk that is running at 4x the desired
PDM clock, then the PDM clock can be generated by using the divider in a clock block:

configure_clock_src_divide(pdmclk, p_mclk, 4);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

An approximate clock can be generated from the 500 MHz xCORE clock as follows:

configure_clock_xcore(pdmclk, 82);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

It should be noted that this is a 3.048 MHz clock, which is 0.75% off a true 3.072 MHz clock. Finally, an
approximate clock can also be generated from the 100 MHz reference clock as follows:

configure_clock_ref(pdmclk, 17);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

This gives a 2.941 MHz clock, which is 4.25% off a true 3.072 MHz clock. This may be acceptable to
simple Voice User Interfaces (VUIs).

3.1 PDM microphones

PDM microphones typically have an initialization delay in the order of about 28ms. They also typically
have a DC offset. Both of these will be specified in the datasheet.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM010267



Microphone array library 2.0.0

4 Usage

All PDM microphone functions are accessed via the mic_array.h header:

#include <mic_array.h>

You also have to add lib_mic_array to the USED_MODULES field of your application Makefile.

A project must also include an extra header mic_array_conf.h which is used to describe the mandatory
configuration described later in this document.

The PDM microphone interface and 4-channel decimators are instantiated as parallel tasks that run in a
par statement. For example, in an eight channel setup the two 4-channel decimators must connect to the
PDM interface via streaming channels:

#include <mic_array.h>

clock pdmclk;
in buffered port:32 p_pdm_mics = XS1_PORT_8B;
in port p_mclk = XS1_PORT_1E;
out port p_pdm_clk = XS1_PORT_1F;

int main() {
streaming chan c_pdm_to_dec[2];
streaming chan c_ds_output[2];

configure_clock_src_divide(pdmclk, p_mclk, 4);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

par {
mic_array_pdm_rx(p_pdm_mics, c_pdm_to_dec[0], c_pdm_to_dec[1]);

mic_array_decimate_to_pcm_4ch(c_pdm_to_dec[0], c_ds_output[0]);
mic_array_decimate_to_pcm_4ch(c_pdm_to_dec[1], c_ds_output[1]);

application(c_ds_output);
}
return 0;

}

There is a further requirement that any application of a mic_array_decimate_to_pcm_4ch() task must
be on the same tile as the mic_array_decimate_to_pcm_4ch() task due to the sharaed frame memory.

As the PDM interface mic_array_pdm_rx() communicates over channels then the placement of it is not
restricted to the same tile as the decimators.

Additionally, the high resolution delay task can be inserted between the PDM interface and the decimators
in the following fashion:

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM010267



Microphone array library 2.0.0

#include <mic_array.h>

clock pdmclk;
in buffered port:32 p_pdm_mics = XS1_PORT_8B;
in port p_mclk = XS1_PORT_1E;
out port p_pdm_clk = XS1_PORT_1F;

int main() {
streaming chan c_pdm_to_hires[2];
streaming chan c_hires_to_dec[2];
streaming chan c_ds_output[2];
chan c_cmd;

configure_clock_src_divide(pdmclk, p_mclk, 4);
configure_port_clock_output(p_pdm_clk, pdmclk);
configure_in_port(p_pdm_mics, pdmclk);
start_clock(pdmclk);

par {
mic_array_pdm_rx(p_pdm_mics, c_pdm_to_hires[0], c_pdm_to_hires[1]);

mic_array_hires_delay(c_pdm_to_hires, c_hires_to_dec, 2, c_cmd);

mic_array_decimate_to_pcm_4ch(c_hires_to_dec[0], c_ds_output[0]);
mic_array_decimate_to_pcm_4ch(c_hires_to_dec[1], c_ds_output[1]);

application(c_ds_output, c_cmd);
}
return 0;

}

Note, using the high resolution delay consumes an extra logical core.

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM010267



Microphone array library 2.0.0

5 High resolution delay task

The high resolution delay task, mic_array_hires_delay(), is capable of implementing delays with
a resolution down to 2.3 microseconds (384kHz). It implements up to 16 delays lines of length
MIC_ARRAY_HIRES_MAX_DELAY, which has a default of 256. The delay line length can be overridden by
redefining it in mic_array_conf.h. Each delay line sample is clocked at the PDM clock rate divided by 8,
that is, 384kHz for a 3.072MHz PDM clock and 352.8kHz for an PDM clock of 2.8224MHz.

By setting a positive delay of N samples on a channel then an input sample will take N extra
clocks to propagate to the decimators. Setting of the taps is done through the function
mic_array_hires_delay_set_taps() which will do an atomic update of all the active delay lines tap
positions. The default delay on each channel is zero. When the high resolution delay task is in use the
define MIC_ARRAY_HIRES_MAX_DELAY should be minimised for the application specific requirements as
longer delay lines require more memory.

See §16 for the API.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM010267



Microphone array library 2.0.0

6 Accessing the samples

Samples are accessed in the form of frames. A frame is returned from the decimators in
either the time domain format, mic_array_frame_time_domain, or in the FFT ready format,
mic_array_frame_fft_preprocessed.

Time domain frames contain a single two-dimensional array, data,with the first dimension being the
channel ID and the second dimension being the sample number. Samples are ordered 0 as the oldest
sample and increasing number being newer.

FFT ready frames also contain a single two-dimensional array, data. The data is preprocessed by the
decimators in such a way that the frames that are ready for direct processing by an DIT FFT.

Simple Audio Frames
Channel

0 1 2 3 … 13 14 15

S
am

p
le Index

Oldest 0 0 0 0 0 0 0
1 1 1 1 1 1 1
2 2 2 2 2 2 2
… … … … … … …

125 125 125 125 125 125 125
126 126 126 126 126 126 126

Newest 127 127 127 127 127 127 127

Complex Audio Frames
Channel

0 1 … 7
Real Imaginary Real Imaginary Real Imaginary Real Imaginary

Oldest 0 0 0 0 0 0 S
am

p
le Index

1 1 1 1 1 1
2 2 2 2 2 2
… … … … … …

125 125 125 125 125 125
126 126 126 126 126 126

Newest 127 127 127 127 127 127

Figure 6: Memory layout of simple audio and complex frames.

Frames in the mic_array_frame_fft_preprocessed are not intended to be directly ac-
cessed by a user. Instead when the frame has been processed by the FFT and cast to a
mic_array_frame_frequency_domain then the data can be manipulated.

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM010267



Microphone array library 2.0.0

7 Frames

The four channel decimators (mic_array_pdm_rx()) output frames of either time domain audio
or FFT ready audio prepared for an FFT. The define MIC_ARRAY_MAX_FRAME_SIZE_LOG2 (found in
mic_array_conf.h) should be used to allocate the arrays to store the frames. This means that
all frames structures will allocate enough memory to allow for a frame size of two to the power of
MIC_ARRAY_MAX_FRAME_SIZE_LOG2 regardless of the size used in the decimator_config_common.
It is recommended that the frame_size_log2 field of decimator_config_common is always set to
MIC_ARRAY_MAX_FRAME_SIZE_LOG2. Equally, the define MIC_ARRAY_NUM_MICS is used for allocating the
memory for the frame structure. This must be set to a multiple of 4.

All frame types contain a two-dimensional data array.

For simplicity of reading M will represent two to the power of MIC_ARRAY_MAX_FRAME_SIZE_LOG2 and F
will represent two to the power of frame_size_log2.

7.1 Time domain frames

If time domain audio output is used (index_bit_reversal is set to 0), then data is stored into ar-
rays in real time ordering. The arrays are of length M where the first F (see §16) entries contain valid
data. All entries between F and M are undefined. The first index of the data element of the structure
mic_array_frame_time_domain is used to address the channel and the second index is used for the
sample number with zero being the oldest sample.

Frames are initialised by the application with a call to mic_array_init_time_domain_frame(). Pass it:

• c_from_decimators: An array of channels to the decimators.
• decimator_count: A count of the number of decimators (the number of elements in the above

array).
• buffer: used internally to maintain ownership of the shared memory between the application and

the decimators.
• audio: the array of audio frames, one (or two) of which will be owned by the decimators at all times.
• dc: the configuration array to the decimators.

Calls to mic_array_get_next_time_domain_frame() should be made to retrieve subsequent audio
frames. These calls require the exact same parameters as mic_array_init_time_domain_frame().

7.2 FFT ready audio

If FFT ready audio output is used (index_bit_reversal is set to 1), then the data is stored in frames
that are designed to be processed with an FFT. The data is stored in arrays of length M where the first
two F entries contain valid data, each element storing a real and an imaginary part. The data is stored
in a bit reversed order (ie, the oldest element is at index 0b0000....0000, the next oldest is at element
0b1000...0000, the next one at element 0b0100...0000, etc up to element 0b1111...1111), and the real
elements store the even channels, whereas the imaginary elements store the odd channels. A postprocess
function must be applied after the Decimate-in-Time (DIT) FFT in order to recover the frequency bins.

Frames are initialised by the application by a call to mic_array_init_frequency_domain_frame(). Pass
it:

• c_from_decimator: An array of channels to the decimators
• decimator_count: A count of the number of decimators (the number of elements in the above

array).
• buffer: used internally to maintain ownership of the shared memory between the application and

the decimators.
• f_complex: the array of complex frames, one (or two) of which will be owned by the decimators at

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM010267



Microphone array library 2.0.0

all times.
• dcc: the configuration to the decimators.

Calls to mic_array_get_next_frequency_domain_frame() should be made to re-
trieve subsequent audio frames. These calls require the exact same parameters as
mic_array_init_frequency_domain_frame().

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM010267



Microphone array library 2.0.0

8 Using the decimators

The decimators reduce the high rate PCM down to lower rate PCM. They also prepare the audio for
subsequenct algorithms, i.e. framing, windowing, etc.

8.1 Setting up the decimators

All decimators attach to an application via streaming channels and are configured simul-
taneously with the mic_array_decimator_configure() function. The parameters to the
mic_array_decimator_configure() function are described in a §16. To start the frame exchange
process mic_array_init_frequency_domain_frame() or mic_array_init_time_domain_frame()
must be called. Now the decimators are running and will be outputting frames at the rate given by their
configuration.

Program start

mic_array_decimator_configure()

mic_array_init_time_domain_frame() mic_array_init_frequency_domain_frame()

mic_array_get_next_time_domain_frame mic_array_get_next_frequency_domain_frame

Figure 7: Order of the function calls allowed to the decimators.

The configuration of the decimators can be changed at any time so long as the function calls respect the
control flow given in Figure 7. Mixing of time and frequency domain functions is not supported without
first calling mic_array_decimator_configure().

8.2 Changing decimator configuration

Once the decimators are running the configuration of the decimators remains constant. If a change of
configuration is required then a call to mic_array_decimator_configure() allows a complete recon-
figure. This will reconfigure and reset all attached decimators. The only configuration that will survive
reconfiguration is the DC offset memory. It is assumed that the microphone specific DC offset remains
fairly constant between reconfigurations.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM010267



Microphone array library 2.0.0

9 mic_array_conf.h

An application that uses lib_mic_array must define the header file mic_array_conf.h. This header
must define:

• MIC_ARRAY_MAX_FRAME_SIZE_LOG2
This defines the maximum frame size (log 2) that the application could request to use. The appli-
cation may request frame sizes from 0 to MIC_ARRAY_MAX_FRAME_SIZE_LOG2. This should be kept
small as it governs the memory required for a frame.

• MIC_ARRAY_NUM_MICS

This defines the number of microphones in use. It is used for allocating memory in the frame
structures.

Optionally, mic_array_conf.h may define

• MIC_ARRAY_DC_OFFSET_LOG2

The DC offset is removed with a high pass filter. DC_OFFSET_DIVIDER_LOG2 can be used to con-
trol the responsiveness of the filter vs the cut off frequency. The default is 13, but setting this
will override it. The value must not exceed 31. See §14 DC offset removal for further explana-
tion.

• MIC_ARRAY_MIC_ARRAY_HIRES_MAX_DELAY

This defines the length of the high resolution delay lines. This should be set to a power of
two for efficiency. The default is 256. Increasing values will result in increasing memory usage.

• MIC_ARRAY_WORD_LENGTH_SHORT

If this define is set to non-zero then this configures the output word length to be a 16 bit
short otherwise its left as 32 bit word length output. All internal processing will be done at 32
bits, only during the write to frame memory will the truncation happen.

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM010267



Microphone array library 2.0.0

10 Four Channel Decimator

The four channel decimator tasks are highly configurable tasks for outputting frames of various
sizes and formats. They can be used to produce frames suitable for time domain applications
or pre-process the frames ready for an FFT for frequency domain applications. The four channel
decimators, mic_array_decimate_to_pcm_4ch(), have a number of configuration options controlled
by the structure decimator_config through the function mic_array_decimator_configure(). The
decimators are controlled by two structures: decimator_config_common and decimator_config,
where the former configuration is common to all microphones and the later is specific to the batch of 4
microphones it interfaces to. The application has the option to control the following settings through
decimator_config_common:

• frame_size_log2: This sets the frame size to a power of two. A frame will contain 2
to the power of frame_size_log2 samples of each channel. Set this to a maximum of
MIC_ARRAY_MAX_FRAME_SIZE_LOG2.

• apply_dc_offset_removal: This controls if the DC offset removal should be enabled or not. Set
to non-zero to enable, or 0 to not apply DC offset removal.

• output_decimation_factor: This specifies the decimation factor to apply to the PDM input after
an 8x decimtor and 4x decimator has already been applied, i.e. for s 3.072MHz PDM clock the
output_decimation_factor will apply to a 96kHz sample rate. The valid values are 2, 4, 6, 8 and
12. Common sample rates can be achieved by using these decimation factors as follows:

output_decimation_factor PDM clock Sample rate

2 3.072 MHz 48 KHz

4 3.072 MHz 24 KHz

6 3.072 MHz 16 KHz

8 3.072 MHz 12 KHz

12 3.072 MHz 8 KHz

2 2.8224 MHz 44.1 KHz

4 2.8224 MHz 22.05 KHz

For other decimation factors see §15.5.
• coefs: This is a pointer to an array of arrays containing the coefficients for the final stage of

decimation. Set this to FIR_LUT(d) where d is the output_decimation_factor; FIR_LUT() is
defined in fir_decimator.h. If you wish to supply your own FIR coefficients; the array should have
the same number of entries as output_decimation_factor.

• fir_gain_compensation: single value to compensate the gain of all the previous decimators. This
must be set to a value that depends on the output_decimation_factor as follows:

output_decimation_factor fir_gain_compensation

2 FIR_COMPENSATOR_DIV_2

4 FIR_COMPENSATOR_DIV_4

6 FIR_COMPENSATOR_DIV_6

8 FIR_COMPENSATOR_DIV_8

12 FIR_COMPENSATOR_DIV_12

If you wish to supply your own, this is a fixed point number in 5.27 format. To apply a unity gain
set to 0.

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM010267



Microphone array library 2.0.0

• apply_mic_gain_compensation: Set this to 1 if microphone gain compensation is required.
The compensation applied is controlled through the mic_gain_compensation array in
decimator_config below.

• A windowing function can be passed in through windowing_function. It is a pointer to an array
of integers that defines the windowing operator. Each sample in the frame is multiplied by its
associated window value and shifted right by 31 places. This is performed before any index bit
reversal (see the next entry). The window function data is in 1.31 fixed point format and only the
first half of the window function is required.

• If the data is going to be post processed using an FFT, then index_bit_reversal can be set to 1.
This will store the data elements reordered according to a reversed bit pattern, suitable for an FFT
without “index bit reversing”. As a side effect, it stores the data as complex numbers, in such a way
that a single complex FFT operates on two microphones in parallel.

• buffering_type: DECIMATOR_HALF_FRAME_OVERLAP is used to specify half frame overlapping or
sequential frames is selected with DECIMATOR_NO_FRAME_OVERLAP.

• number_of_frame_buffers: is used to specify the number of frames used by the application plus
decimators. This number should be at least two when DECIMATOR_NO_FRAME_OVERLAP is in effect or
three when DECIMATOR_HALF_FRAME_OVERLAP is in effect. This is due to the double buffered nature
of the decimators, i.e. the decimators are writing to (one or two) frames whilst the application is
using at least one.

decimator_config configures the per-channel information:

• dcc: This is a pointer to the common decimator configuration.
• data: This is the memory used to save the FIR samples. It must be an array of size (4 channels x
THIRD_STAGE_COEFS_PER_STAGE x sizeof(int) x output_decimation_factor bytes).

• mic_gain_compensation: This is an array with four elements specifying the relative compensation
to apply to each microphone. Unity gain is given by the value INT_MAX. To equalise the gain of
all microphones, the quietest microphone should be given unity gain, and the gain of all other
microphones should be set proportionally lower.

• channel_count: this is the number of channels that is enabled. Set this to 4 to enable all channels.
If set to a value less than 4, only the first channel_count channels are enabled.

The decimator configuration is applied by calling the function mic_array_decimator_configure() with
an array of chanends referring to the decimators, a count of the number of decimators, and an array of
decimator configurations.

The output of the decimator is 32-bit or 16-bit(MIC_ARRAY_WORD_LENGTH_SHORT != 0) PCM audio at the
requested sample rate.

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM010267



Microphone array library 2.0.0

11 Intended usage model

The library has been designed with the intention of being able to dynamically change its configuration,
however, for minimal memory footprint choosing a single output rate means the fewest FIR coefficient
end up in the binary. A typical code structure will contain the following:

unsigned buffer;
mic_array_init_time_domain_frame(c_ds_output, 2, buffer, audio, dc);

while(1){
mic_array_frame_time_domain * latest_frame = mic_array_get_next_time_domain_frame(c_ds_output, 2, buffer,
↪→ audio, dc);

}

When a reconfigure is performed then there will be a short interval (to flush the FIR data buffers) before
the audio continues.

Overlapping frames are supported so that frequency domain algorithms can be converted back into the
time domain without artifacts. See lib_dsp for FFT functions.

The number_of_frame_buffers member of decimator_config_common is required so that a frame
buffer (array) can be used in a round-robin fashion. This means that the when the application calls ei-
ther mic_array_init_time_domain_frame() or mic_array_init_frequency_domain_frame() then
the ownership of one or two of the fames (depending on the overlapping scheme) will be passed to the
decimators. When a decimator has finished writing the oldest frame it is returned to the application and
the next in line is sent to the decimators. This means that by declaring larger frame buffers and increas-
ing number_of_frame_buffers then the application can have visibility of longer periods of time at the
expense of memory.

Due to the round-robin nature of the library the application must be finished with the data in the oldest
frame before the decimators need it again. This is the nature of real time audio processing.

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM010267



Microphone array library 2.0.0

12 FIR memory

For each decimator a block of memory must be allocated for storing FIR data. The size of the data block
must be:

Number of channels * THIRD_STAGE_COEFS_PER_STAGE * Decimation factor * sizeof(int)

bytes. The data must also be double word aligned. For example, if the decimation factor was set to
DECIMATION_FACTOR and two decimators were in use, then the memory allocation for the FIR memory
would look like:

int data[CHANNELS][THIRD_STAGE_COEFS_PER_STAGE*DECIMATION_FACTOR];

The FIR memory must also be initialized in order to prevent a spurious click during startup. Normally
initializing to all zeros is sufficient. Memset is a highly efficient way of doing this.

Note, globally declared memory is always double word aligned.

Copyright 2016 XMOS Ltd. 18 www.xmos.com
XM010267



Microphone array library 2.0.0

13 Example Applications

Two stand alone applications showing the minimum code required to build a functioning
microphone array are given in AN00217_app_high_resolution_delay_example and in
AN00220_app_phase_aligned_example.

A worked example of a fixed beam delay and sum beamformer is given in the application
AN00219_app_lores_DAS_fixed. Also examples of of how to set up high resolution delayed sampling
can be seen in the high resolution fixed beam delay and sum beamformer given in the application
AN00218_app_hires_DAS_fixed.

Copyright 2016 XMOS Ltd. 19 www.xmos.com
XM010267



Microphone array library 2.0.0

14 DC offset removal

The DC offset removal is implemented as a single pole IIR filer obeying the relation:

Y[n] = Y[n-1] * alpha + x[n] - x[n-1]

Where alpha is defined as 1 - 2^MIC_ARRAY_DC_OFFSET_LOG2. Increasing MIC_ARRAY_DC_OFFSET_LOG2
will increase the stability of the filter and decrease the cut off point at the cost of increased settling time.
Decreasing MIC_ARRAY_DC_OFFSET_LOG2 will increase the cut off point of the filter.

Copyright 2016 XMOS Ltd. 20 www.xmos.com
XM010267



Microphone array library 2.0.0

15 Signal Characteristics

15.1 Definition of terms

15.2 Passband

This specifies the bandwidth, from DC, in Hz over which a signal will not be attenuated by more than 3dB.

15.3 Stopband

This specifies the start frequency to the input Nyquest sample rate that the input signal should be atten-
uated over.

15.4 Characteristics

The output signal has been decimated from the original PDM in such a way to introduce no more than
-80dB of noise into the passband for all output sample rates.

output_decimation_factor PDM Sample Rate(Hz) Output sample rate(Hz)

2 3072000 48000

4 3072000 24000

6 3072000 16000

8 3072000 12000

12 3072000 8000

2 2822400 44100

4 2822400 22050

6 2822400 14700

8 2822400 11025

12 2822400 7350

output_decimation_factor Passband(Hz) Stopband(Hz) Ripple(dB) THD+N(dB)

2 18240 24000 1.93 -144.63

4 9600 12000 0.64 -142.61

6 6400 8000 0.37 -139.10

8 4800 6000 0.24 -136.60

12 3200 4000 0.18 -133.07

2 16758 22050 1.93 -144.63

4 8820 11025 0.64 -142.61

6 5880 7350 0.37 -139.10

8 4410 5512.5 0.24 -136.60

12 2940 3675 0.18 -133.07

The decimation is achieved by applying three poly-phase FIR filters sequentially. The design of these
filters can be viewed in the python script fir_design.py. The default magnitude responses of the first

Copyright 2016 XMOS Ltd. 21 www.xmos.com
XM010267



Microphone array library 2.0.0

to third stages are given as Figure 13 through to Figure 17 in the appendix. The first stage and second
stage can be viewed in Figure 11 and Figure 12.

The phase delay of the default filters is 18 output clock cycles. This can be shortened by either using a
minimum phase FIR as the final stage decimation FIR and/or by reducing the number of taps on the final
stage decimation FIR.

15.5 Advanced filter design

The above table has been generated to provide 80dB of stopband attenuation for all decimation factors
whilst maintaining a fairly flat passband and wide bandwidth. However for a given specification the filter
characteristics can be optimised to reduce latency, increase passband, lower the passband ripple and
increase the signal to noise ratio. For example, in a system where a 16kHz output is required then
limiting the passband to 8kHz would improve the other properties. Equally, if the noise floor of the PDM
microphone is 65dB then there is little advantage exceeding that in the filter.

15.6 fir_design.py usage

In order generate custom filters the fir_design.py can be executed. The purpose of this script is
to design and generate the FIR coefficients for the three stages of decimation. fir_design.py is a
command line tool that takes a number of options to control each parameter of the filter design. As
previously illustrated the PDM to PCM conversion is divided into three stages. The overall noise floor
is governed with the option --stopband-attenuation. This should be a positive number of decibels
between 20 and 120. In the first stage the designer is able to tune:

• passband bandwidth (--first-stage-pass-bw) - The bandwidth of the passband, in kHz.
• stopband bandwidth (--first-stage-stop-bw) - The bandwidth of the bands around the regions

that will alias with the pass band after decimation, in kHz.

These are illustrated in Figure 8.

In the second stage the same options are available:

• passband bandwidth (--second-stage-pass-bw) - The bandwidth of the passband, in kHz.
• stopband bandwidth (--second-stage-stop-bw) - The bandwidth of the bands around the regions

that will alias with the pass band after decimation, in kHz.

These are illustrated in Figure 9.

In the third stage the designer can provide custom decimation factors in addition to the pass and stop
band parameters. Also the delay of the filter can be controlled by tuning the number of taps to allocate
for each phase of the poly-phase FIR (--third-stage-num-taps). The fewer the number of taps per
phase then the shorter the delay of the filter but the harder the design will be to meet other criteria.

To add a custom third stage filter --add-third-stage has to be called. It requires the following argu-
ments:

• decimation factor - the ratio of input samples to output samples.
• normalized output passband - this specifies where the passband ends.
• normalized output stopband - this specified where the stopband starts.
• filter_name - this assigns a name to the custom filter.

For example to add a third stage decimator called “my_filter” with a final stage decimation factor of
2, normalized output passband of 0.4 and normalized output stopband of 0.5 then the argument
--add-third-stage 2 0.4 0.5 my_filter would need to be passed to the script.

These are illustrated in figure Figure 10.

Copyright 2016 XMOS Ltd. 22 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Norm alised I nput  Freq

− 140

− 120

− 100

− 80

− 60

− 40

− 20

0

20

M
a

g
n

it
u

d
e

 R
e

sp
o

n
se

Pa
ssb

a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

Stopband
Bandwidth

Passband
Bandwidth

Stopband
Attenuation

Figure 8: First stage design parameters.

The filter name is used to generate the defines and coefficient arrays used to implement
the filter in lib_mic_array. The defines DECIMATION_FACTOR_ + (filter_name) and
FIR_COMPENSATOR_ + (filter_name) will be generated to represent the filter designed. In the
generated defines the name will be in all caps and the FIR coefficients array will be in all lowercase.
Additionally, the array const int g_third_stage_ + (filter_name) _fir[] will also be generated
and will contain all the coefficients to implement the filter. For example, if fir_design.py was passed
the option --add-third-stage 2 0.4 0.5 my_filter then available in lib_mic_array would be:

#define DECIMATION_FACTOR_MY_FILTER (2)
#define FIR_COMPENSATOR_MY_FILTER (301451293)
extern const int g_third_stage_my_filter_fir[126];

Copyright 2016 XMOS Ltd. 23 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Norm alised I nput  Freq

− 160

− 140

− 120

− 100

− 80

− 60

− 40

− 20

0

20

M
a

g
n

it
u

d
e

 R
e

sp
o

n
se

S
to
p
b
a
n
d

S
to
p
b
a
n
d

S
to
p
b
a
n
d

Pa
ssb

a
n
d

Passband
Bandwidth Stopband

Bandwidth

Stopband
Attenuation

Figure 9: Second stage design parameters.

Copyright 2016 XMOS Ltd. 24 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Norm alised I nput  Freq

− 160

− 140

− 120

− 100

− 80

− 60

− 40

− 20

0

20

M
a

g
n

it
u

d
e

 R
e

sp
o

n
se

StopbandPassband

C
u
t 

O
ff

C
u
t 

O
ff

Stopband
Attenuation

Figure 10: Third stage design parameters.

Copyright 2016 XMOS Ltd. 25 www.xmos.com
XM010267



Microphone array library 2.0.0

16 API

16.1 Creating an PDM microphone interface instance

Function mic_array_pdm_rx

Description PDM Microphone Interface component.
This task handles the interface to up to 8 PDM microphones whilst also decimating
the PDM data by a factor of 8. The output is sent via two channels to two receiving
tasks.

Type void
mic_array_pdm_rx(in buffered port:32 p_pdm_mics,

streaming chanend c_4x_pdm_mic_0,
streaming chanend ?c_4x_pdm_mic_1)

Parameters p_pdm_mics
The 8 bit wide port connected to the PDM microphones.

c_4x_pdm_mic_0
The channel where the decimated PDM of microphones 0-3 will be out-
putted.

c_4x_pdm_mic_1
The channel where the decimated PDM of microphones 4-7 will be out-
putted. This can be null for 4 channel output.

Copyright 2016 XMOS Ltd. 26 www.xmos.com
XM010267



Microphone array library 2.0.0

16.2 PDM microphone processing

Function mic_array_decimate_to_pcm_4ch

Description Four Channel Decimation component.
This task decimates the four channel input down to the desired output sample rate.
The decimator has a fixed divide by 4 followed by a divide by decimation_factor where
decimation_factor is greater than or equal to 2. The channel c_frame_output is used
to transfer data and control information between the application and this task. It
relies of shared memory for so the client of this task must be on the same tile as this
task.

Type void
mic_array_decimate_to_pcm_4ch(

streaming chanend c_from_pdm_interface,
streaming chanend c_frame_output)

Parameters c_from_pdm_interface
The channel where the decimated PDM from pdm_rx task will be in-
putted.

c_frame_output
The channel used to transfer data and control information between the
client of this task and this task.

Function mic_array_decimator_configure

Description Decimator configuration.
This function initializes the decimators and configures them as per the decimator
configuration structure thay are passed.

Type void
mic_array_decimator_configure(

streaming chanend c_from_decimators[],
unsigned decimator_count,
mic_array_decimator_config_t dc[])

Parameters c_from_decimators
The channels used to transfer pointers between the application and the
mic_array_decimate_to_pcm_4ch() task.

decimator_count
The count of mic_array_decimate_to_pcm_4ch() tasks.

dc The array cointaining the decimator configuration for each decimator.

Copyright 2016 XMOS Ltd. 27 www.xmos.com
XM010267



Microphone array library 2.0.0

Type mic_array_decimator_config_t

Description Configuration structure unique to each of the 4 channel deciamtors.
This contains configuration that is channel specific, i.e. Gain compensation, etc.

Fields mic_array_decimator_conf_common_t *unsafe dcc

int *unsafe data
The data for the FIR decimator.

int mic_gain_compensation
An array describing the relative gain compensation to apply to the mi-
crophones.

The microphone with the least gain is defined as 0x7fffffff (INT_MAX),
all others are given as INT_MAX*min_gain/current_mic_gain.

unsigned channel_count
The count of enabled channels (0->4).

Type mic_array_decimator_conf_common_t

Description Four Channel decimator configuration structure.
This is used to describe the configuration that the group of synchronous decimators
will use to process the PCM audio.

Fields unsigned frame_size_log2
The output frame size log2, i.e.

A frame will contain 2 to the power of frame_size_log2 samples of each
channel.

int apply_dc_offset_removal
Remove the DC offset from the audio before the final decimation.

Set to non-zero to enable.

int index_bit_reversal
If non-zero then bit reverse the index of the elements within the frame.

Used in the case of preparing for an FFT.

int *unsafe windowing_function
If non-null then this will apply a windowing function to the frame.

Used in the case of preparing for an FFT.

Continued on next page

Copyright 2016 XMOS Ltd. 28 www.xmos.com
XM010267



Microphone array library 2.0.0

unsigned output_decimation_factor
Final stage FIR Decimation factor.

const int *unsafe coefs
The coefficients for the FIR decimator.

int apply_mic_gain_compensation
Set to non-zero to apply microphone gain compensation.

int fir_gain_compensation
5.27 format for the gain compensation for the three stages of FIR filter.

mic_array_decimator_buffering_t buffering_type
The buffering type used for frame exchange.

unsigned number_of_frame_buffers
The count of frames used between the decimators and the application.

Copyright 2016 XMOS Ltd. 29 www.xmos.com
XM010267



Microphone array library 2.0.0

16.3 PCM frame interfacing

Type mic_array_decimator_buffering_t

Description Four Channel decimator buffering type.
This type is used to describe the buffering mode. Note: to use a windowing function
the constant-overlap-and-add property must be obeyed, i.e. Coef[n] = 1-Coef[N-n]
where N is the array length. Only half the array need be specified as the windowing
function is assumed to be symmetric.

Values DECIMATOR_NO_FRAME_OVERLAP
The frames have no overlap.

DECIMATOR_HALF_FRAME_OVERLAP
The frames have a 50% overlap betweeen sequential frames.

Function mic_array_init_time_domain_frame

Description Four Channel Decimation initializer for raw audio frames.
This function call sets up the four channel decimators. After this has been
called there will be a real time requirement on this task, i.e. this task must call
mic_array_get_next_time_domain_frame() at the output sample rate multiplied by the
frame size.

Type void
mic_array_init_time_domain_frame(

streaming chanend c_from_decimators[],
unsigned decimator_count,
unsigned &buffer,
mic_array_frame_time_domain audio[],
mic_array_decimator_config_t dc[])

Parameters c_from_decimators
The channels used to transfer pointers between the application and the
mic_array_decimate_to_pcm_4ch() tasks.

decimator_count
The count of mic_array_decimate_to_pcm_4ch() tasks.

buffer The buffer index. Always points to the index that is accessible to the
application (initialized internally)

audio An array of audio frames.

dc The array cointaining the decimator configuration for each decimator.

Copyright 2016 XMOS Ltd. 30 www.xmos.com
XM010267



Microphone array library 2.0.0

Function mic_array_get_next_time_domain_frame

Description Four Channel Decimation raw audio frame exchange function.
This function handles the frame exchange between the
mic_array_decimate_to_pcm_4ch() tasks and the application. It returns a pointer to
the most recently written frame. After this point the oldest frame is assumed out of
scope to the application.

Type mic_array_frame_time_domain* alias
mic_array_get_next_time_domain_frame(

streaming chanend c_from_decimators[],
unsigned decimator_count,
unsigned &buffer,
mic_array_frame_time_domain *alias audio,
mic_array_decimator_config_t dc[])

Parameters c_from_decimators
The channels used to transfer pointers between the application and the
mic_array_decimate_to_pcm_4ch() tasks.

decimator_count
The count of mic_array_decimate_to_pcm_4ch() tasks.

buffer The buffer index (Used internally)

audio An array of audio frames.

dc The array cointaining the decimator configuration for each decimator.

Returns A pointer to the frame now owned by the application. That is, the most recently
written samples.

Function mic_array_init_frequency_domain_frame

Description Four Channel Decimation initializer for complex frames.
This function call sets up the four channel decimators. After this has been
called there will be a real time requirement on this task, i.e. this task must call
mic_array_get_next_frequency_domain_frame() at the output sample rate multiplied
by the frame size.

Type void
mic_array_init_frequency_domain_frame(

streaming chanend c_from_decimators[],
unsigned decimator_count,
unsigned &buffer,
mic_array_frame_fft_preprocessed f_fft_preprocessed[],
mic_array_decimator_config_t dc[])

Continued on next page

Copyright 2016 XMOS Ltd. 31 www.xmos.com
XM010267



Microphone array library 2.0.0

Parameters c_from_decimators
The channels used to transfer pointers between the application and the
mic_array_decimate_to_pcm_4ch() tasks.

decimator_count
The count of mic_array_decimate_to_pcm_4ch() tasks.

buffer The buffer index. Always points to the index that is accessible to the
application (initialized internally)

f_fft_preprocessed
An array of complex frames.

dc The array cointaining the decimator configuration for each decimator.

Function mic_array_get_next_frequency_domain_frame

Description Four Channel Decimation complex frame exchange function.
This function handles the frame exchange between the
mic_array_decimate_to_pcm_4ch() tasks and the application. It returns a pointer to
the most recently written frame. After this point the oldest frame is assumed out of
scope to the application.

Type mic_array_frame_fft_preprocessed* alias
mic_array_get_next_frequency_domain_frame(

streaming chanend c_from_decimators[],
unsigned decimator_count,
unsigned &buffer,
mic_array_frame_fft_preprocessed *alias f_fft_preprocessed,
mic_array_decimator_config_t dc[])

Parameters c_from_decimators
The channels used to transfer pointers between the application and the
mic_array_decimate_to_pcm_4ch() tasks.

decimator_count
The count of mic_array_decimate_to_pcm_4ch() tasks.

buffer The buffer index (Used internally)

f_fft_preprocessed
An array of complex frames.

dc The array cointaining the decimator configuration for each decimator.

Returns A pointer to the frame now owned by the application. That is, the most recently
written samples.

Copyright 2016 XMOS Ltd. 32 www.xmos.com
XM010267



Microphone array library 2.0.0

16.4 Frame types

Type mic_array_complex_t

Description Complex number in Cartesian coordinates.

Fields int32_t re
The real component.

int32_t im
The imaginary component.

Type mic_array_frame_time_domain

Description A frame of raw audio.

Fields long long alignment
Used to force double work alignment.

int32_t data
Raw audio data.

mic_array_metadata_t metadata
Frame metadata (Used internally).

Type mic_array_frame_frequency_domain

Description A frame of frequency domain audio in Cartesian coordinates.

Fields long long alignment
Used to force double work alignment.

mic_array_complex_t data
Complex audio data (Cartesian).

mic_array_metadata_t metadata
Frame metadata (Used internally).

Type mic_array_frame_fft_preprocessed

Description A frame of audio preprocessed for direct insertion into an FFT.

Continued on next page

Copyright 2016 XMOS Ltd. 33 www.xmos.com
XM010267



Microphone array library 2.0.0

Fields long long alignment
Used to force double work alignment.

mic_array_complex_t data
Complex audio data (Cartesian).

mic_array_metadata_t metadata
Frame metadata (Used internally).

16.5 High resolution delay task

Function mic_array_hires_delay

Description High resolution delay component.
This task handles the application of individual delays for up to 16 channels. Each
unit of delay represents one sample at the input sample rate, i.e. the rate at which
the circular buffer is being updated. The maximum delay is given by the size of the
circular buffer.

Type void
mic_array_hires_delay(streaming chanend c_from_pdm_frontend[],

streaming chanend c_to_decimator[],
unsigned n,
streaming chanend c_cmd)

Parameters c_from_pdm_frontend
The channels connecting to the output of the PDM interface

c_to_decimator
The channels connecting to the input of the 4 channel decimators.

n The size of the two channel arrays, they must be the same.

c_cmd The channel connecting the application to this task used for setting the
delays.

Function mic_array_hires_delay_set_taps

Description Application side interface to high resolution delay.
This function is used by the client of the high resolution delay to set the delays.

Type void
mic_array_hires_delay_set_taps(streaming chanend c_cmd,

unsigned delays[],
unsigned num_channels)

Continued on next page

Copyright 2016 XMOS Ltd. 34 www.xmos.com
XM010267



Microphone array library 2.0.0

Parameters c_cmd The channel connecting the application to this task used for setting the
delays.

delays An array of the delays to be set. These must all be less than
MIC_ARRAY_HIRES_MAX_DELAY.

num_channels
The number of microphones. This must be the same as the delays array.

Copyright 2016 XMOS Ltd. 35 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

180

160

140

120

100

80

60

40

20

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 11: First stage FIR magnitude response.

Copyright 2016 XMOS Ltd. 36 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

140

120

100

80

60

40

20

0
M

ag
n
it
u
d
e 

R
es

p
o
n
se

Figure 12: Second stage FIR magnitude response.

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

140

120

100

80

60

40

20

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 13: Third stage FIR magnitude response for a divide of 2.

Copyright 2016 XMOS Ltd. 37 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

140

120

100

80

60

40

20

0
M

ag
n
it
u
d
e 

R
es

p
o
n
se

Figure 14: Third stage FIR magnitude response for a divide of 4.

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

160

140

120

100

80

60

40

20

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 15: Third stage FIR magnitude response for a divide of 6.

Copyright 2016 XMOS Ltd. 38 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

160

140

120

100

80

60

40

20

0
M

ag
n
it
u
d
e 

R
es

p
o
n
se

Figure 16: Third stage FIR magnitude response for a divide of 8.

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Input Freq

160

140

120

100

80

60

40

20

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 17: Third stage FIR magnitude response for a divide of 12.

Copyright 2016 XMOS Ltd. 39 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Output Freq

80

70

60

50

40

30

20

10

0
M

ag
n
it
u
d
e 

R
es

p
o
n
se

Figure 18: Final frequency response for a divide of 2.

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Output Freq

70

60

50

40

30

20

10

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 19: Final frequency response for a divide of 4.

Copyright 2016 XMOS Ltd. 40 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Output Freq

80

70

60

50

40

30

20

10

0
M

ag
n
it
u
d
e 

R
es

p
o
n
se

Figure 20: Final frequency response for a divide of 6.

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Output Freq

70

60

50

40

30

20

10

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 21: Final frequency response for a divide of 8.

Copyright 2016 XMOS Ltd. 41 www.xmos.com
XM010267



Microphone array library 2.0.0

0.0 0.1 0.2 0.3 0.4 0.5
Normalised Output Freq

70

60

50

40

30

20

10

0

M
ag

n
it
u
d
e 

R
es

p
o
n
se

Figure 22: Final frequency response for a divide of 12.

Copyright 2016 XMOS Ltd. 42 www.xmos.com
XM010267



Microphone array library 2.0.0

APPENDIX A - Known Issues

• decimator_config channel count is tested for 4 channels per decimator, fewer than 4 is untested.

Copyright 2016 XMOS Ltd. 43 www.xmos.com
XM010267



Microphone array library 2.0.0

APPENDIX B - lib_mic_array change log

B.1 2.0.0

• Renamed all functions to match library structure
• Decimator interface functions now take the array of mic_array_decimator_config structure rather

than mic_array_decimator_config_common
• All defines renames to match library naming policy
• DC offset simplified
• Added optional MIC_ARRAY_NUM_MICS define to save memory when using less than 16 microphones

B.2 1.0.1

• Added dynamic DC offset removal at startup to eliminate slow convergance
• Mute first 32 samples to allow DC offset to adapt before outputting signal
• Fixed XTA scripte to ensure timing is being met
• Now use a 64-bit accumulator for DC offset removal
• Consolidated generators into a single python generator
• Produced output frequency response graphs
• Added 16 bit output mode

B.3 1.0.0

• Major refactor
• FRAME_SIZE_LOG2 renamed MAX_FRAME_SIZE_LOG2
• Decimator interface now takes arrays of streaming channels
• Decimators now take channel count as a parameter
• Added filter designer script
• Documentation updates
• First stage now uses a FIR decimator
• Changed decimation flow
• Removed high res delay module
• Added generator for FIR coefficients
• Added ability to reduce number of channels active in a decimator
• Increased number of FIR taps
• Increased output dynamic range

B.4 0.0.2

• Documentation fixes
• Fixed frame number fix
• Added frame metadata

B.5 0.0.1

• Initial Release
• Changes to dependencies:

– lib_logging: Added dependency 2.0.0
– lib_xassert: Added dependency 2.0.0

Copyright 2016 XMOS Ltd. 44 www.xmos.com
XM010267



Microphone array library 2.0.0

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 45 www.xmos.com
XM010267


	Microphone array library
	Overview
	Typical memory usage
	Hardware characteristics
	PDM microphones

	Usage
	High resolution delay task
	Accessing the samples
	Frames
	Time domain frames
	FFT ready audio

	Using the decimators
	Setting up the decimators
	Changing decimator configuration

	mic_array_conf.h
	Four Channel Decimator
	Intended usage model
	FIR memory
	Example Applications
	DC offset removal
	Signal Characteristics
	Definition of terms
	Passband
	Stopband
	Characteristics
	Advanced filter design
	fir_design.py usage

	API
	Creating an PDM microphone interface instance
	PDM microphone processing
	PCM frame interfacing
	Frame types
	High resolution delay task

	Known Issues
	lib_mic_array change log
	2.0.0
	1.0.1
	1.0.0
	0.0.2
	0.0.1


